top of page

Learn Basic Python for Analytics: Data Types and Variables

Headline

Belajar skill digital lebih dalam, LIVE bareng top instructors!

9 Juli 2025

|

19.00 - 21.00 WIB

100% Gratis

Kelas LIVE dan Interaktif

Topik & Materi Baru dan Selalu Up-to-Date

Muhammad Azmi Fansuri

Data Analyst at OTA Company

6+ years experience in Data Science and Analytics

  • Data Scientist at ByteDance

  • Data Analyst Instructor at RevoU

  • Ex-Senior Data Analyst at Tokopedia

  • Ex-Data Scientist at Unilever via EVOSYS

  • Ex-Junior Data Scientist at PT Astra International Tbk

Kenapa Harus Belajar di RevoU Masterclass?

Pelajari tipe data dasar Python untuk analytics, cara pakai variabel, konversi tipe data, dan teknik data cleaning dengan Python dan Pandas. Training ini pas untuk pemula yang ingin menguasai dasar Python dalam data analysis secara praktis.

syllabus-1.webp

Kelas ini cocok untukmu jika kamu ingin:

Mengeksplorasi peluang karier di bidang digital

Menambah wawasan tentang karier dan profesi di bidang digital

Mempelajari ilmu dan skill yang dibutuhkan untuk memulai karier di bidang digital

Jangan Sampai Ketinggalan.
Daftar Sekarang!

9 Juli 2025

|

19.00 - 21.00 WIB

Kamu akan belajar tentang

Learn Basic Python for Analytics: Data Types and Variables

Rabu, 9 Juli 2025 | 19.00 - 21.00 WIB 


Kamu akan pelajari : 

Introduction to Data Types in Python for Analytics

  • Understanding the essential Python data types used in data analysis, such as integers, floats, strings, and booleans, and their role in analyzing data.


Using Variables for Storing Data in Analytics

  • Learning how variables are used to store data, including how to assign and manipulate values in the context of working with data analysis tools.


Data Type Conversion for Analytics

  • Learning how to convert data types to prepare data for analysis, such as converting strings to datetime objects or integers to floats using Pandas.


Handling Missing Data and Data Cleaning

  • Discussing techniques for identifying and handling missing or incorrect data types, and how to clean data using Python libraries like Pandas.

syllabus-1.webp
bottom of page