top of page

A Beginner’s Guide to Cleaning Up Data with Spreadsheets

Headline

Belajar skill digital lebih dalam, LIVE bareng top instructors!

28 Mei 2025

|

19.00 - 21.00 WIB

100% Gratis

Kelas LIVE dan Interaktif

Topik & Materi Baru dan Selalu Up-to-Date

Muhammad Iqbal

Data Analytics Consultant at Starcore

  • Data Analytics Instructor at RevoU 

  • Guest lecturer (IPB University & UNJ) 

  • Govt. trainer (PUPR, JSC, Kominfo, etc.) 

  • Ex Data Analyst at CIFOR (Center for International Forestry Research) 

  • Founder of Ngolah.in

Kenapa Harus Belajar di RevoU Masterclass?

Pelajari pentingnya data cleaning untuk analitik yang akurat, teknik hapus duplikat, isi data hilang, perbaiki kesalahan input, dan temukan outlier dengan visualisasi. Praktik langsung mengelola outlier dengan spreadsheet cocok buat pemula yang ingin menguasai dasar data cleaning!

syllabus-1.webp

Kelas ini cocok untukmu jika kamu ingin:

Mengeksplorasi peluang karier di bidang digital

Menambah wawasan tentang karier dan profesi di bidang digital

Mempelajari ilmu dan skill yang dibutuhkan untuk memulai karier di bidang digital

Jangan Sampai Ketinggalan.
Daftar Sekarang!

28 Mei 2025

|

19.00 - 21.00 WIB

Kamu akan belajar tentang

A Beginner’s Guide to Cleaning Up Data with Spreadsheets

Rabu, 28 Mei 2025 | 19.00 - 21.00 WIB


Kamu akan pelajari : 

Introduction to Data Cleaning and Outlier

  • Understand why clean data is essential for reliable analytics, and learn about common data issues like duplicates, missing values, anomalies, and typos.


Removing Duplicates in Spreadsheets

  • Use spreadsheet tools to detect and remove duplicate entries effectively.


Handling Missing Data

  • Learn techniques to fill missing values using methods like mean, median, and mode.


Correcting Data Entry Errors

  • Explore how to fix typos and standardize entries to ensure clean, consistent data.


Visualizing Data to Spot Outliers

  • Learn how to use visual tools, such as scatter plots, in spreadsheets to identify potential outliers.


Practical Example: Outlier Management

  • Apply outlier handling techniques to sample datasets in a spreadsheet.

syllabus-1.webp
bottom of page